

Dynamic Visualization of Basic High-Order Functions for Learning Functional Programming

Hidekazu Shiozawa1, Takumi Shimura1, Koki Asakawa1 and Takafumi Tanaka1

1 Tamagawa University
6-1-1 Tamagawa-gakuen, Machida, Tokyo 194-8610, Japan

E-mail: {shiozawa,tanaka_t}@eng.tamagawa.ac.jp

Abstract

Functional programming is a paradigm of computer
programming that composes a program with functions
without side effects like mathematical functions. While it
has the advantage of affinity for describing parallel
processing, large-scale numerical computation, signal
processing, and so on [1], it is considered difficult for even
programmers to learn functional programming because of
its high level of abstraction. In recent years, however, many
programming languages have begun to incorporate basic
functional features. We are developing a visual learning
system for novice programmers of functional programming.
This paper proposes a new method for dynamically
visualizing the behavior of the most useful basic higher-
order functions including lazy evaluation, and reports on an
implemented prototype visualization system. In this
method, a function is represented as a horizontal line
segment instead of a node or a box, and function evaluation
is represented as moving arguments down over the line
segment instead of static line connections between nodes.

1. Introduction

The concept of functional programming began with early
research in LISP, and dedicated programming languages
such as ML, Haskell, and Scala have been put to practical
use. It describes computer operations in terms of functions
in the mathematical sense without side effects, which
always return the same values when called with the same
arguments. Functional programming is also characterized
by the fact that changing a value of any variable is
prohibited in principle. It has been used in academic
research and certain business areas because of its simplicity
and suitability for parallel processing.

While functional programming has great advantages
such as simplicity of description, it is considered difficult
to learn due to its high level of abstraction and has not been
widely adopted in actual software development. Its concept
is very different from procedural and object-oriented

models, where the state of a virtual computer is changed by
instructions.

In recent years, with the development of compiler
technology conventional programming languages such as
Java and Python now offer functional syntax and features
as a useful complement to conventional programming
methods. As a result, functional programming techniques
are being introduced even in environments where only
conventional programming languages are used. Today,
knowledge of functional programming has become a
necessity for developers.

However, functional programming is considered to be
difficult to learn because it has many unique features.
• Recursive functions: Instead of loops recursions are

used for repetitive processing.
• First-class functions: Functions can be treated like data

and assignable to variables.
• Higher-order functions: Functions can be used as

arguments or return values of functions.
• Currying: Converting a function that takes multiple

arguments into a higher-order function of one variable
that returns a function.

• Lazy evaluation: The evaluation of an expression is
performed at the point in time when the value after the
evaluation is needed.

• Closure: A type of function that preserves the context
(state) in which it was generated.

• Monad: A monad is used for input/output and performs
time-series processing or exceptional processing.

• Map, Reduce, Filter: These higher-order functions are
often used for batch processing of data sequences.

Against this background, there is a need for education
and teaching materials for basic knowledge of functional
programming in information technology universities,
technical schools, and software companies.

In programming education, the effectiveness of visual
learning materials [2][3] such as dynamic visualization of
the program execution process (e.g., algorithm animation)
and visual programming that combines visual components
such as blocks has long been recognized.

2023 RISP International Workshop on Nonlinear Circuits, Communications and Signal
Processing (RISP NCSP 2023), Feb. 28 - Mar. 3, 2023

478

Therefore, with the goal of developing a visual learning
environment for functional programming, we are
developing a method for visualizing the dynamic behavior
of programs that are considered particularly difficult for
beginning programmers to understand, such as higher-
order functions and lazy evaluation. A higher-order
function is a function that treats another function as its
argument or return value, and lazy evaluation is an
evaluation method in which an expression or function is
actually evaluated only when a value is needed in the
program. we are considering using visualization methods
that are familiar and effective for beginners in conventional
programming materials.

2. Related Work

Many program visualizations and visual languages of
functional programming have been proposed [1][4][5], but
most of them represent the relationship between functions
as a network structure with nodes and links. In such
methods, it is difficult to represent the dynamic behavior of
functional programming, such as higher-order functions
and lazy evaluation.

Learning programming often involves writing programs
and learning processing concepts from the execution results.
Okamoto et al.[6] conducted an experiment in which they
visualized the processing of a program written in C using
four methods: visualization, identification, predictability,
and separation. As a result, it was confirmed that there was
a learning effect for more than one-third of the users.

Oshiro et al. [7] developed an elementary algorithm
visualization system and proposed an experiment in which
they presented a program in a programming language with
which the learners were unfamiliar in terms of execution
and process structure, and then asked the learners to write
the corresponding source code.

In addition, Takeuchi et al. [8] proposed a learning
support method that automatically generates fill-in-the-
blank questions for functional programming languages and
judges whether the answers are correct or incorrect. The
results suggest that writing programs in other languages for
the same process and comparing them can improve the
learning effect.

3. Proposal

To support the learning of functional programming
languages, we propose a learning system that dynamically
visualizes the processing flow using animation by
graphically representing functions and data lists as
arguments used in functional programming languages.
Among them, we develop a method to dynamically
visualize higher-order functions and lazy evaluation

mechanisms commonly used in functional programming.
The target programming language is Haskell, and examples
of Haskell source code are presented.

As a related project, we are developing a visual
programming learning environment for beginners in
functional programming [9], as shown in Figure 1. It
supports a Scratch-like Japanese visual programming
language that is interchangeable with Haskell code.

In conjunction with this learning environment, we
propose a method for dynamically visualizing the behavior
of the most useful basic higher-order functions on data lists
in functional programming, such as “map”, “filter”, and
“fold” (or “reduce”) and are implementing a prototype
visualization system. These higher-order functions take
arguments of a function and an array of data such as
numbers and apply the function to each element of the array.

Figure 2 and Figure 3 show examples of our proposed
visualization method for high-order functions, “map” and
“filter” on a data list. In this visualization method, a
function is represented as a horizontal line segment instead
of a node or a box, and function evaluation is represented
as the movement of list elements down over the line
segment instead of static line connections between nodes.
In addition, by using animation, it is possible to represent
the dynamic behavior of higher-order functions, including
lazy evaluation. Figure 4 shows an example of a sequence
of functions and lazy evaluation. Only evaluated list
elements are moved.

4. Prototype System

Figure 5 shows an example screenshot of the prototype
system. When a user enters parameters of a small program,
such as function names, variable names, arguments, the
system generates a diagram according to the input data and
dynamically visualizes the processing flow of four basic
functions: “map”, “filter”, “foldl” and “take”, with
animation. At the same time, the system generates Haskell
source code according to the input.

In Figure 5, there is a data list based on the values entered

Fig1: Functional programming learning environment

2023 RISP International Workshop on Nonlinear Circuits, Communications and Signal
Processing (RISP NCSP 2023), Feb. 28 - Mar. 3, 2023

479

into the system by the user, two horizontal line segments
representing the functions, and Haskell code generated by
the system. A data list that appears above a horizontal line
segment indicates that the function receives a list as an
argument that has not been evaluated.

The system expresses that the function evaluates the
elements of the argument list by moving each element
down over the corresponding horizontal line segment, as
shown in Figure 6. In this figure, the filter function outputs
a list of elements greater than 2 that pass through the
horizontal line segment, and the output list is given as an
argument to the print function, which displays the elements.

In this system, only those elements whose values are
actually evaluated in the lazy evaluation fall in the
animation to represent the timing of the evaluation. As
shown in Figure 6, elements that do not fall as the
animation progresses indicate that they have not yet been
evaluated.

5. Summary

 The paper reports on our ongoing development of a
system that dynamically visualizes basic functions used in
the functional programming language Haskell. This system

provides dynamic visualization of the basic process flow of
higher-order functions and lazy evaluation.
 For future work, it is necessary to implement functions
that could not be implemented in this study and to express
properties of functional programming languages such as
referential transparency. A user study is also needed.

In this research, we proposed and implemented a method
for dynamically visualizing the behavior of basic higher-
order functions in functional programming. This
visualization will be a part of learning environment for
college students in computer science or related departments
and software engineers in information technology
companies.

Acknowledgment

This work was partially supported by JSPS KAKENHI
Grant Number JP22K12320.

References

[1] H. J. Reekie, Realtime Signal Processing: Dataflow,

Visual, and Functional Programming, Ph.D thesis,
University of Technology at Sydney, 1995. https://
ptolemy.berkeley.edu/~johnr/papers/thesis.html

[2] J. Sorva, V. Karavirta, and L. Malmi, “A Review of
Generic Program Visualization Systems for
Introductory Programming Education,” ACM Trans.
on Computing Education, vol. 13, no. 4, 2013.

1 4 7 0 2 8

map

(+2)

(a) Before function application

map (+2)

3 6 9 2 4 10

Fig2: Proposed dynamic visualization of the map function

(a) After function application

1 4 7 0 2 8

filter

even

(a) Before function application

1 7filter even

4 0 2 8

Fig3: Proposed dynamic visualization of the filter function

(b) After function application

1 4 7 0 2 8

map

(+2)

take

3

(a) Before function application

3 6 9

0 2 8

map (+2)

take 3

Fig4: Proposed dynamic visualization of lazy evaluation

(b) After function application

2023 RISP International Workshop on Nonlinear Circuits, Communications and Signal
Processing (RISP NCSP 2023), Feb. 28 - Mar. 3, 2023

480

[3] T. Tanaka, I. Fujie, Y. Kakara, and H. Hashiura, “A
Visualization System of Program Behavior by
Animations for Novice Learners,” Proc. NCSP’21,
pp.21-24, 2021.

[4] T. Weck and M. Tichy, “Visualizing Data-Flows in
Functional Programs,” Proc. IEEE International
Conference on Software Analysis, Evolution and
Reengineering, pp. 293-303, 2016.

[5] Enso International Inc., Enso (formerly Luna),
https://enso.org (accessed Jan. 2023)

[6] M. Okamoto, M. Murakami, N. Yoshikawa, and H.
Kita, “Development and Assessment of Learning
Materials for Computer Programming on the “Visual
Manifestation”,” Japan Journal of Educational
Technology, vol. 37, no.1, pp35-45, 2013. (In
Japanese)

[7] M. Oshiro and Y. Nagai, “Elementary Algorithm
Visualization System for Programming Learning for
Beginners,” Proc. IPSJ Information Education
Symposium 2018, pp104-111, 2018. (In Japanese)

[8] R. Takeuchi, H. Okubo, and H. Kasuya, and S.
Yamamoto, “An Learning Support Environment for
Haskell Programming by Automatic Generation of
Cloze Question,” IPSJ Technical Report on Software
Engineering, vol. 2011-SE-171, no. 15, pp.1-8, 2011.
(In Japanese)

[9] K. Asakawa and T. Tanaka, “Visual Programming
Environment for Learning Functional Programming
Using Unit Test,” Proc. 12th International Congress
on Advanced Applied Informatics (IIAI-AAI), 2022.

Fig6: Example of the visualization after application and animation of the filter function

Fig5: Overview of the prototype visualization system (before the function application)

2023 RISP International Workshop on Nonlinear Circuits, Communications and Signal
Processing (RISP NCSP 2023), Feb. 28 - Mar. 3, 2023

481

