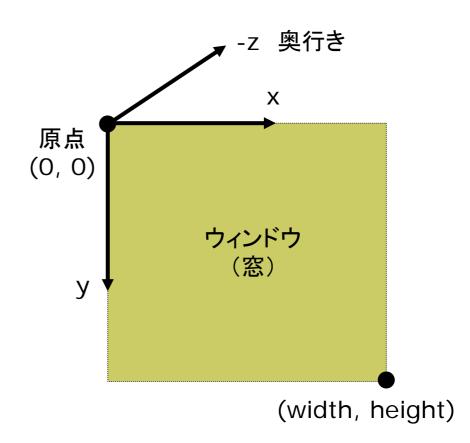
Graphics with Processing

2006-7 3次元描画の基礎

http://vilab.org

塩澤秀和

7.1 3D**図形の**描画


3D設定

- □ size(幅, 高さ, P3D)
 - 3D(と2D)が使えるウィンドウ
- lights()
 - 標準の照明を設定
 - draw()内に書いたほうがいい

3D基本形状

- box(辺の長さ)
- □ box(幅, 高さ, 奥行き)
 - 原点に立方体・直方体を描画
- □ sphere(半径)
 - 原点に球を描画
- □ サンプル
 - Examples → 3D-Forms → Primitives

3次元座標系(無指定時)

7.2 3Dでの位置指定

3次元幾何変換

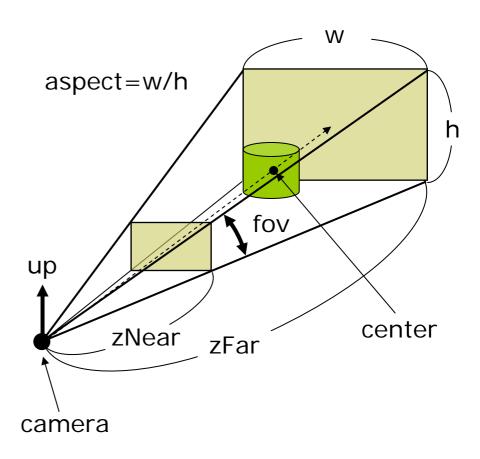
- \Box translate(tx, ty, tz)
 - 3次元平行移動
- \square scale(sx, sy, sz)
 - 3次元拡大·縮小
- □ rotateX(θx)
 - x軸まわりの回転
 - x軸を回転軸とした回転
- \Box rotateY(θy)
 - y軸まわりの回転
 - y軸を回転軸とした回転
- □ rotateZ(θ_Z)
 - z軸まわりの回転
 - 2次元のrotate(θz) と同じ

変換行列の操作

- pushMatrix()
 - 現在の変換行列を一時保存
 - スタックの一番上に積む
- popMatrix()
 - 最近保存した変換行列を戻す
 - スタックの上から取り出す
 - pushMatrixと必ず対にする
- □ 描画例

```
pushMatrix();
translate(150, 100, -100);
rotateY(radians(30));
box(150, 50, 100);
popMatrix();
```

7.3 投影関数


平行投影(直交投影)

- ortho($x_{min}, x_{max}, y_{min}, y_{max}, z_{min}, z_{max}$)
 - 遠近感をつけない投影
 - X_{min}~ X_{max}: x座標の範囲
 - y_{min}~ y_{max}: y座標の範囲
 - Z_{min}~ Z_{max}: Z座標の範囲

透視投影(透視図法)

- perspective(fov, aspect, zNear, zFar)
 - 遠くのものを小さく描く遠近法
 - fov: 視野角(ラジアン)
 - aspect: 視体積の縦横比
 - zNear, zFar: クリッピング範囲
 - 無指定でも適当な設定がされる

視体積(view volume)

7.4 視点位置と演習課題

視点

- □ 幾何変換による設定
 - 視点の移動・回転=描画図形の 逆方向への移動・回転
 - 視点位置を設定するかわりに、 図形を見える位置に移動
- camera(eyeX, eyeY, eyeZ, centerX, centerY, centerZ, upX, upY, upZ)
 - 視点の設定関数
 - 無指定時は、7.1の図のように 見える適当な値が設定される
 - eye: カメラ(視点)の座標
 - center: カメラで狙う座標
 - up: 上方向を示すべクトル (通常は各要素は, 0か±1)

課題

- ウィンドウの中央に3D図形を表示するプログラムを作成しなさい
 - できれば、平行投影と透視投影を切り替えられるようにしなさい
- できたプログラムを、アプレットに変換して、Webブラウザで表示させてみなさい
 - File→Export([⇒ ||]アイコン)
- さらにスケッチフォルダをZIPファイルに圧縮して提出しなさい
 - Tools→Archive Sketch
 - http://vilab.org/upload/ cg-upload.html
 - ■「フォルダ圧縮ZIPファイル」